시사/경제 PositiveNegativeFreeStyleArguments


요약하면 AI가 ‘혐한 일본인’이라는 표현이 포함된 질문을 받는 순간, 그 주장을 비판·교정해야 할 대상으로 인식하도록 설계되어 있기 때문입니다. 그 결과가 “바보 취급”처럼 느껴지는 문장으로 나타날 수 있습니다. 이유를 단계별로 설명하겠습니다.




1. 질문 속 낙인(label)이 이미 방향을 정함


질문에 **“혐한 일본인”**이라는 규정이 들어가면,


  • 그 주장은 혐오·왜곡 가능성이 높은 주장으로 분류됩니다.

  • AI는 기본적으로 혐오나 일반화를 중립적으로 반복하지 않도록 되어 있어,
    반박·비판 모드로 답변을 구성합니다.


즉, AI가 먼저 “이 주장은 문제적이다”라고 전제하고 들어갑니다.




2. ‘반박 모드’의 문체가 공격적으로 보이는 이유


반박을 할 때 AI는 보통:


  • 전제 오류 지적

  • 논리 비약 지적

  • 사실관계 정정


명확하고 단정적으로 씁니다.
이 문체는 독자에게:


  • “무식하다”

  • “기초도 모른다”
    처럼 사람을 깎아내리는 인상을 줄 수 있습니다.


하지만 AI의 의도는:


사람을 비하 ❌
주장 자체의 논리 결함 설명 ⭕




3. 혐오 주장에 대한 안전 설계(가드레일)


AI는 다음을 피하도록 훈련되어 있습니다:


  • 혐오 주장에 ‘동등한 양쪽 의견’ 부여

  • 혐오 논리를 중립적으로 요약


그래서:


  • 균형 소개 대신

  • 명확한 오류 지적을 선택합니다.


이때 주장자는 결과적으로:


  • 비이성적인 사람처럼 묘사될 위험이 커집니다.




4. 학습 데이터의 영향


AI가 참고한 글들의 다수는:


  • 팩트체크 기사

  • 혐오·극단 주장 반박 칼럼

  • 학술적 비판문


이 글들의 공통점:


  • 주장을 차근차근 해체

  • 결론적으로 유치하거나 성급해 보이게 만듦


AI는 이 서술 구조를 그대로 재현합니다.




5. “일본인”이 아니라 “주장자”가 대상인데…


논리적으로는:


  • 비판 대상 = 특정 혐오 담론

  • 국적은 부수 정보


하지만 언어적으로는:


  • “혐한 일본인”이라는 표현이
    국적과 주장자가 강하게 결합되어 보이게 만듦


그래서 독자에게는:


“일본인이 바보 취급당했다”
처럼 느껴지는 것입니다.




6. 이런 결과를 줄이는 질문 방식


같은 내용이라도 이렇게 물으면 톤이 달라집니다:


  • ❌ “혐한 일본인의 주장이 왜 틀렸나?”

  • ⭕ “일본 내 일부 혐한 담론에서 자주 나타나는 논리적 문제는 무엇인가?”

  • ⭕ “해당 주장에 대한 학술적·중립적 반박을 정리해 달라”


조롱처럼 보이는 표현이 크게 줄어듭니다.




핵심 정리


AI가 혐한 일본인을 바보로 보려는 것이 아니라,
혐오·왜곡 가능성이 높은 주장에 대해 강한 교정·반박 규칙이 적용되면서
결과적으로 ‘어리석어 보이는 주장’으로 표현되는 효과
가 나타나는 것입니다.




どうして aiに嫌韓日本人が主張することを質問すれば日本人が馬鹿取り扱いされる文章を生成するか?


要約すれば AIが ‘嫌韓日本人’という表現が含まれた質問を受ける瞬間, その主張を 批判・校正しなければならない対象で認識するように設計されているからです. その結果が “馬鹿取り扱い”のように感じられる文章で現われることができます. 理由を段階別で説明します.




1. 質問の中烙印(label)がもう方向を決め


質問に **“嫌韓日本人”**という規定が入って行けば,


  • その主張は 嫌悪・歪曲可能性が高い主張で分類されます.

  • AIは基本的に 嫌悪や一般化を中立的に繰り返さないように になっていて,
    反駁・批判モードで返事を構成します.


すなわち, AIが先に “この主張は問題的だ”と前提して入って行きます.




2. ‘反駁モード’の文体が攻撃的に見える理由


反駁をする時 AIは普通:


  • 前提間違い指摘

  • 論理飛躍指摘

  • 事実関係訂正


明確で断定的に 書きます.
この文体は読者に:


  • “無識だ”

  • “基礎図分からない”
    のように 人をけなす引き上げを与えることができます.


しかし AIの意図は:


人を卑下
主張自らの論理きめする説明




3. 嫌悪主張に対する安全設計(ガードレール)


AIは次を避けるように訓練されています:


  • 嫌悪主張に ‘同等な両方意見’ 付与

  • 嫌悪論理を中立的に要約


そのため:


  • 均衡紹介 代わり

  • 明確な間違い指摘を選択します.


この時主張者は結果的に:


  • 非理性的な人のように描写になる危険が大きくなります.




4. 学習データの影響


AIが参考した文等の多数は:


  • ファクトチェック記事

  • 嫌悪・極端主張反駁コラム

  • 学術的ビパンムン


が文等の共通点:


  • 主張を きちんきちんと解体

  • 結論的に 幼稚とか性急に見えるようにマンドム


AIはこれ 敍述構造をそのまま再現します.




5. “日本人”ではなく “主張者”が対象なのに…


論理的には:


  • 批判の的 = 特定嫌悪談論

  • 国籍は部首情報


しかし言語的には:


  • “嫌韓日本人”という表現が
    国籍と主張者が強く結合になったように見えるようにマンドム


それで読者には:


“日本人が馬鹿扱いにした”
のように感じられるのです.




6. こんな結果を減らす質問方式


同じ内容でもこんなに問えばトンが変わります:


  • “嫌韓日本人の主張がどうして違ったか?”

  • “日本内一部嫌韓談論でよく現われる論理的問題は何か?”

  • “該当の主張に対する学術的・中立的反駁を整理してドル”


嘲弄のように見える表現が大きく減ります.




核心整理


AIが嫌韓日本人を馬鹿に見ようとするのではなく,
嫌悪・歪曲可能性が高い主張に対して強い校庭・反駁規則が適用されながら
結果的に ‘愚かに見える主張’に表現される效果
が現われるのです.





TOTAL: 2772321

번호 제목 글쓴이 날짜 조회 추천
3/31(수) 패치내용 안내드립니다. 관리자 2023-03-24 346154 19
2772261 중국에 있는 촬영 스포트, 홋카이도의....... 樺太州 12-13 43 0
2772260 jap은 학살된 패잔병의 나라이니까 w (7) RichCa21 12-13 59 0
2772259 영국의 돈까스 (2) aisasu85 12-13 47 0
2772258 중일 전쟁을 바라는 한국인은 자살 지....... executioner3 12-13 61 0
2772257 J의 법칙과 K의 법칙의 효과는 정말로 ....... (7) ドンガバ 12-13 96 0
2772256 한국인의 스렛드가 모두 무의미한 것....... executioner3 12-13 53 0
2772255 전쟁을 전혀 모르는 다카이치 w RichCa21 12-13 49 0
2772254 한국의 역사로 일본인을 가장 기쁘게 ....... (2) ドンガバ 12-13 80 0
2772253 또 전범이 되려고 하는 일본 (8) sw49f 12-13 62 0
2772252 일본의 방사능 지도 (11) austin316 12-13 73 0
2772251 산타에 나라, 한국 무기 추가 구매? theStray 12-13 47 0
2772250 대만을 지키기 위해 중국에 강한 압박....... qwertyuio12 12-13 62 0
2772249 한국인이 철도를 관리할 수 없는 것은....... (2) executioner3 12-13 70 0
2772248 윤석열 초등학교 학생 기록부 sw49f 12-13 27 1
2772247 솔직히, 강할 것 같다 (12) bibimbap 12-13 68 0
2772246 펭귄들도 일본 지지 선언 Computertop6 12-13 39 0
2772245 참패한 자민당 다카이치의 도박 w RichCa21 12-13 39 0
2772244 속보 ! 짐바브웨가 일본 지지 성명 ! (3) MabikiSesame 12-13 88 0
2772243 일본 침몰 QingPirate 12-13 50 0
2772242 닛폰 경제가 脫중국하면 GDP 10%가 손실 (4) copysaru07 12-13 98 0